翻訳と辞書
Words near each other
・ Minneapolis Arena
・ Minneapolis Armory
・ Minneapolis Arts Commission
・ Minneapolis Auditorium
・ Minneapolis BNSF Rail Bridge
・ Minneapolis Board of Estimate and Taxation election, 2009
・ Minneapolis Board of Estimate and Taxation election, 2013
・ Minneapolis Bruins
・ Minneapolis Business College
・ Minneapolis Central Library
・ Minneapolis Chief of Police
・ Minneapolis City Conference
・ Minneapolis City Council
・ Minkowski inequality
・ Minkowski norm
Minkowski plane
・ Minkowski Portal Refinement
・ Minkowski Prize
・ Minkowski problem
・ Minkowski space
・ Minkowski space (number field)
・ Minkowski's bound
・ Minkowski's first inequality for convex bodies
・ Minkowski's question mark function
・ Minkowski's second theorem
・ Minkowski's theorem
・ Minkowskie
・ Minkowski–Bouligand dimension
・ Minkowski–Hlawka theorem
・ Minkowski–Steiner formula


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Minkowski plane : ウィキペディア英語版
Minkowski plane

In mathematics, a Minkowski plane (named after Hermann Minkowski) is one of the Benz planes: Möbius plane, Laguerre plane and Minkowski plane.
==Classical real Minkowski plane==

Applying the pseudo-euclidean distance d(P_1,P_2)=(x'_1-x'_2)^2-(y'_1-y'_2)^2 on two points P_i=(x'_i,y'_i) (instead of the euclidean distance) we get the geometry of ''hyperbolas'', because a pseudo-euclidean circle \ is a hyperbola with midpoint M.
By a transformation of coordinates x_i=x'_i+y'_i, y_i=x'_i-y'_i, the pseudo-euclidean distance can be rewritten as d(P_1,P_2)=(x_1-x_2)(y_1-y_2). The hyperbolas then have asymptotes parallel to the non-primed coordinate axes.
The following completion (see Möbius and Laguerre planes) ''homogenizes'' the geometry of hyperbolas:
: \mathcal P:=(\R\cup \)^2=
\R^2 \cup (\ \times\R) \cup (\R\times\) \
\cup \ \ ,
\ \infty \notin \R, the set of points,
: \mathcal Z:=\ \ |
\ a,b \in \R, a\ne 0\}
::: \cup \+c,x\ne b\}
\cup \ \ | \ a,b,c \in \R, a\ne 0\}, the set of cycles.
The incidence structure (,,\in) is called the classical real Minkowski plane.
The set of points consists of \R^2, two copies of \R and the point (\infty,\infty).
Any line y=ax+b ,a\ne0 is completed by point (\infty,\infty), any hyperbola
y=\frac+c,a\ne0 by the two points (b,\infty),(\infty,c) (see figure).
Two points (x_1,y_1)\ne(x_2,y_2) can not be connected by a cycle if and only if
x_1=x_2 or y_1=y_2.
We define:
Two points P_1,P_2 are (+)-parallel (P_1\parallel_+ P_2) if x_1=x_2 and (−)-parallel (P_1\parallel_- P_2) if y_1=y_2.

Both these relations are equivalence relations on the set of points.
Two points P_1,P_2 are called parallel (P_1\parallel P_2) if
P_1\parallel_+ P_2 or P_1\parallel_- P_2.
From the definition above we find:
Lemma:
:
*For any pair of non parallel points A,B there is exactly one point C with A\parallel_+ C \parallel_- B.
:
*For any point P and any cycle z there are exactly two points A,B \in z with A\parallel_+ P \parallel_- B.
:
*For any three points A, B, C, pairwise non parallel, there is exactly one cycle z that contains A,B,C.
:
*For any cycle z, any point P\in z and any point Q, P \not\parallel Q and Q\notin z there exists exactly one cycle z' such that z\cap z'=\, i.e. z touches z' at point P.
Like the classical Möbius and Laguerre planes Minkowski planes can be described as the geometry of plane sections of a suitable quadric. But in this case the quadric lives in projective 3-space: The classical real Minkowski plane is isomorphic to the geometry of plane sections of a hyperboloid of one sheet (not degenerated quadric of index 2).

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Minkowski plane」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.